3.895 \(\int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=345 \[ \frac {b (b B-a C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}-\frac {\left (-3 a^3 C+7 a^2 b B-3 a b^2 C-b^3 B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a b d \left (a^2-b^2\right )^2}-\frac {\left (-5 a^3 C+9 a^2 b B-a b^2 C-3 b^3 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a^2 d \left (a^2-b^2\right )^2}+\frac {b \left (-5 a^3 C+9 a^2 b B-a b^2 C-3 b^3 B\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{4 a^2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}+\frac {\left (-3 a^5 C+15 a^4 b B-10 a^3 b^2 C-6 a^2 b^3 B+a b^4 C+3 b^5 B\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a^2 b d (a-b)^2 (a+b)^3} \]

[Out]

-1/4*(9*B*a^2*b-3*B*b^3-5*C*a^3-C*a*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x
+1/2*c),2^(1/2))/a^2/(a^2-b^2)^2/d-1/4*(7*B*a^2*b-B*b^3-3*C*a^3-3*C*a*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/
2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/b/(a^2-b^2)^2/d+1/4*(15*B*a^4*b-6*B*a^2*b^3+3*B*b^5-3*C*a
^5-10*C*a^3*b^2+C*a*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+
b),2^(1/2))/a^2/(a-b)^2/b/(a+b)^3/d+1/2*b*(B*b-C*a)*sin(d*x+c)*cos(d*x+c)^(1/2)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))
^2+1/4*b*(9*B*a^2*b-3*B*b^3-5*C*a^3-C*a*b^2)*sin(d*x+c)*cos(d*x+c)^(1/2)/a^2/(a^2-b^2)^2/d/(a+b*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 1.17, antiderivative size = 345, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {3029, 3000, 3055, 3059, 2639, 3002, 2641, 2805} \[ -\frac {\left (7 a^2 b B-3 a^3 C-3 a b^2 C-b^3 B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a b d \left (a^2-b^2\right )^2}-\frac {\left (9 a^2 b B-5 a^3 C-a b^2 C-3 b^3 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a^2 d \left (a^2-b^2\right )^2}+\frac {\left (-6 a^2 b^3 B-10 a^3 b^2 C+15 a^4 b B-3 a^5 C+a b^4 C+3 b^5 B\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a^2 b d (a-b)^2 (a+b)^3}+\frac {b \left (9 a^2 b B-5 a^3 C-a b^2 C-3 b^3 B\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{4 a^2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}+\frac {b (b B-a C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^3),x]

[Out]

-((9*a^2*b*B - 3*b^3*B - 5*a^3*C - a*b^2*C)*EllipticE[(c + d*x)/2, 2])/(4*a^2*(a^2 - b^2)^2*d) - ((7*a^2*b*B -
 b^3*B - 3*a^3*C - 3*a*b^2*C)*EllipticF[(c + d*x)/2, 2])/(4*a*b*(a^2 - b^2)^2*d) + ((15*a^4*b*B - 6*a^2*b^3*B
+ 3*b^5*B - 3*a^5*C - 10*a^3*b^2*C + a*b^4*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(4*a^2*(a - b)^2*b*(a
 + b)^3*d) + (b*(b*B - a*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*a*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) + (b*(
9*a^2*b*B - 3*b^3*B - 5*a^3*C - a*b^2*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(4*a^2*(a^2 - b^2)^2*d*(a + b*Cos[c
+ d*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3000

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b^2 - a*b*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*
Sin[e + f*x])^(1 + n))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m
 + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n,
-1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx &=\int \frac {B+C \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3} \, dx\\ &=\frac {b (b B-a C) \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {\int \frac {\frac {1}{2} \left (4 a^2 B-3 b^2 B-a b C\right )-2 a (b B-a C) \cos (c+d x)+\frac {1}{2} b (b B-a C) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx}{2 a \left (a^2-b^2\right )}\\ &=\frac {b (b B-a C) \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {b \left (9 a^2 b B-3 b^3 B-5 a^3 C-a b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {\int \frac {\frac {1}{4} \left (8 a^4 B-5 a^2 b^2 B+3 b^4 B-7 a^3 b C+a b^3 C\right )-a \left (4 a^2 b B-b^3 B-2 a^3 C-a b^2 C\right ) \cos (c+d x)-\frac {1}{4} b \left (9 a^2 b B-3 b^3 B-5 a^3 C-a b^2 C\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a^2 \left (a^2-b^2\right )^2}\\ &=\frac {b (b B-a C) \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {b \left (9 a^2 b B-3 b^3 B-5 a^3 C-a b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}-\frac {\int \frac {-\frac {1}{4} b \left (8 a^4 B-5 a^2 b^2 B+3 b^4 B-7 a^3 b C+a b^3 C\right )+\frac {1}{4} a b \left (7 a^2 b B-b^3 B-3 a^3 C-3 a b^2 C\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a^2 b \left (a^2-b^2\right )^2}-\frac {\left (9 a^2 b B-3 b^3 B-5 a^3 C-a b^2 C\right ) \int \sqrt {\cos (c+d x)} \, dx}{8 a^2 \left (a^2-b^2\right )^2}\\ &=-\frac {\left (9 a^2 b B-3 b^3 B-5 a^3 C-a b^2 C\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a^2 \left (a^2-b^2\right )^2 d}+\frac {b (b B-a C) \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {b \left (9 a^2 b B-3 b^3 B-5 a^3 C-a b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}-\frac {\left (7 a^2 b B-b^3 B-3 a^3 C-3 a b^2 C\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{8 a b \left (a^2-b^2\right )^2}+\frac {\left (15 a^4 b B-6 a^2 b^3 B+3 b^5 B-3 a^5 C-10 a^3 b^2 C+a b^4 C\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{8 a^2 b \left (a^2-b^2\right )^2}\\ &=-\frac {\left (9 a^2 b B-3 b^3 B-5 a^3 C-a b^2 C\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a^2 \left (a^2-b^2\right )^2 d}-\frac {\left (7 a^2 b B-b^3 B-3 a^3 C-3 a b^2 C\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a b \left (a^2-b^2\right )^2 d}+\frac {\left (15 a^4 b B-6 a^2 b^3 B+3 b^5 B-3 a^5 C-10 a^3 b^2 C+a b^4 C\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a^2 (a-b)^2 b (a+b)^3 d}+\frac {b (b B-a C) \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {b \left (9 a^2 b B-3 b^3 B-5 a^3 C-a b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 4.86, size = 383, normalized size = 1.11 \[ \frac {\frac {\frac {8 a \left (2 a^3 C-4 a^2 b B+a b^2 C+b^3 B\right ) \left ((a+b) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-a \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{b (a+b)}+\frac {\left (5 a^3 C-9 a^2 b B+a b^2 C+3 b^3 B\right ) \sin (c+d x) \left (\left (b^2-2 a^2\right ) \Pi \left (-\frac {b}{a};\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right )}{a b \sqrt {\sin ^2(c+d x)}}+\frac {\left (16 a^4 B-9 a^3 b C-19 a^2 b^2 B+3 a b^3 C+9 b^4 B\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}}{(a-b)^2 (a+b)^2}-\frac {2 b \sin (c+d x) \sqrt {\cos (c+d x)} \left (b \left (5 a^3 C-9 a^2 b B+a b^2 C+3 b^3 B\right ) \cos (c+d x)+a \left (7 a^3 C-11 a^2 b B-a b^2 C+5 b^3 B\right )\right )}{\left (a^2-b^2\right )^2 (a+b \cos (c+d x))^2}}{8 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^3),x]

[Out]

((-2*b*Sqrt[Cos[c + d*x]]*(a*(-11*a^2*b*B + 5*b^3*B + 7*a^3*C - a*b^2*C) + b*(-9*a^2*b*B + 3*b^3*B + 5*a^3*C +
 a*b^2*C)*Cos[c + d*x])*Sin[c + d*x])/((a^2 - b^2)^2*(a + b*Cos[c + d*x])^2) + (((16*a^4*B - 19*a^2*b^2*B + 9*
b^4*B - 9*a^3*b*C + 3*a*b^3*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (8*a*(-4*a^2*b*B + b^3*B +
 2*a^3*C + a*b^2*C)*((a + b)*EllipticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]))/(b*(a +
 b)) + ((-9*a^2*b*B + 3*b^3*B + 5*a^3*C + a*b^2*C)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a
+ b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]],
 -1])*Sin[c + d*x])/(a*b*Sqrt[Sin[c + d*x]^2]))/((a - b)^2*(a + b)^2))/(8*a^2*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/((b*cos(d*x + c) + a)^3*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 9.44, size = 1744, normalized size = 5.06 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^3,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C/b*(-b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+a-b)-1/2/(a+b)/a*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1
/2*d*x+1/2*c),2^(1/2))-1/2*b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*si
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/a/(a^2-b^2)*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*E
llipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(
a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))+2*(B*b
-C*a)/b*(-1/2*b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1
/2*d*x+1/2*c)^2*b+a-b)^2-3/4*b^2*(3*a^2-b^2)/a^2/(a^2-b^2)^2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1
/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+a-b)-7/8/(a+b)/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos
(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2
^(1/2))+1/4/(a+b)/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b+3/8/(a+b)/(a^2-b^2)/a^2*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli
pticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+
1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3/8*b^3/a^
2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*
d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*c
os(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c)
,2^(1/2))-3/8*b^3/a^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-15/4*a^2/(a^2-b^2)^2/(-2*a*b+2*b
^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+3/2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+
1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipti
cPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))-3/4/a^2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x
+1/2*c),-2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^3),x)

[Out]

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^3), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________